Search results for "Isometry group"

showing 6 items of 6 documents

ISOMETRY GROUPS OF WEIGHTED SPACES OF HOLOMORPHIC FUNCTIONS: TRANSITIVITY AND UNIQUENESS

2009

We survey some recent results on the isometries of weighted spaces of holomorphic functions defined on an open subset of ℂn. We will see that these isometries are determined by a subgroup of the automorphisms on a distinguished subset of the domain. We will look for weights with 'large' groups of isometries and observe that in certain circumstances the group of isometries determines the weight.

Discrete mathematicsPure mathematicsGroup (mathematics)General MathematicsHolomorphic functionIsometryMathematics::Metric GeometryUniquenessIsometry groupAutomorphismIdentity theoremDomain (mathematical analysis)MathematicsAsian-European Journal of Mathematics
researchProduct

Dimension of the isometry group in three-dimensional Riemannian spaces

2021

The necessary and sufficient conditions for a three-dimensional Riemannian metric to admit a group of isometries of dimension $r$ acting on s-dimensional orbits are obtained. These conditions are Intrinsic, Deductive, Explicit and ALgorithmic and they offer an IDEAL labeling that improves previously known invariant studies.

PhysicsPure mathematicsIdeal (set theory)Physics and Astronomy (miscellaneous)Dimension (vector space)Group (mathematics)Computer Science::Information RetrievalMetric (mathematics)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Invariant (mathematics)Isometry groupGeneral Relativity and Quantum CosmologyClassical and Quantum Gravity
researchProduct

Birkhoff theorem and conformal Killing-Yano tensors

2015

We analyze the main geometric conditions imposed by the hypothesis of the Jebsen-Birkhoff theorem. We show that the result (existence of an additional Killing vector) does not necessarily require a three-dimensional isometry group on two-dimensional orbits but only the existence of a conformal Killing-Yano tensor. In this approach the (additional) isometry appears as the known invariant Killing vector that the ${\cal D}$-metrics admit.

PhysicsKilling vector fieldPure mathematicsGeneral Relativity and Quantum CosmologyPhysics and Astronomy (miscellaneous)FOS: Physical sciencesConformal mapTensorGeneral Relativity and Quantum Cosmology (gr-qc)Invariant (mathematics)Isometry groupIsometry (Riemannian geometry)General Relativity and Quantum Cosmology
researchProduct

Hyperbolic isometries versus symmetries of links

2009

We prove that every finite group is the orientation-preserving isometry group of the complement of a hyperbolic link in the 3-sphere.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Pure mathematicsHyperbolic groupHyperbolic linkTotally geodesic surfaces01 natural sciencesRelatively hyperbolic group57M60Mathematics - Geometric Topology[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]Hyperbolic linksHyperbolic space010102 general mathematicsHyperbolic 3-manifoldHyperbolic manifoldGeometric Topology (math.GT)Algebra010307 mathematical physicsGeometry and TopologyIsometry groupHyperbolic Dehn surgeryHyperbolic Dehn surgeryTopology and its Applications
researchProduct

On the invariant symmetries of the D-metrics

2007

We analyze the symmetries and other invariant qualities of the $\mathcal{D}$-metrics (type D aligned Einstein Maxwell solutions with cosmological constant whose Debever null principal directions determine shear-free geodesic null congruences). We recover some properties and deduce new ones about their isometry group and about their quadratic first integrals of the geodesic equation, and we analyze when these invariant symmetries characterize the family of metrics. We show that the subfamily of the Kerr-NUT solutions are those admitting a Papapetrou field aligned with the Weyl tensor.

PhysicsWeyl tensorGeodesicNull (mathematics)Statistical and Nonlinear PhysicsCosmological constantType (model theory)General Relativity and Quantum Cosmologysymbols.namesakeHomogeneous spacesymbolsInvariant (mathematics)Isometry groupMathematical PhysicsMathematical physicsJournal of Mathematical Physics
researchProduct

PainlevéGullstrand synchronizations in spherical symmetry

2010

A Painlev\'e-Gullstrand synchronization is a slicing of the space-time by a family of flat spacelike 3-surfaces. For spherically symmetric space-times, we show that a Painlev\'e-Gullstrand synchronization only exists in the region where $(dr)^2 \leq 1$, $r$ being the curvature radius of the isometry group orbits ($2$-spheres). This condition says that the Misner-Sharp gravitational energy of these 2-spheres is not negative and has an intrinsic meaning in terms of the norm of the mean extrinsic curvature vector. It also provides an algebraic inequality involving the Weyl curvature scalar and the Ricci eigenvalues. We prove that the energy and momentum densities associated with the Weinberg c…

PhysicsPhysics and Astronomy (miscellaneous)Coordinate systemScalar (mathematics)CurvatureGeneral Relativity and Quantum CosmologyGravitational energy04.20.Cv 04.20.-qGeneral Relativity and Quantum CosmologyPhysical SciencesSchwarzschild metricCircular symmetryIsometry groupEigenvalues and eigenvectorsMathematical physics
researchProduct